Some arithmetic properties of generalized Bernoulli numbers
نویسندگان
چکیده
منابع مشابه
Arithmetic Properties of Generalized Euler Numbers
The generalized Euler number En|k counts the number of permutations of {1, 2, . . . , n} which have a descent in position m if and only if m is divisible by k. The classical Euler numbers are the special case when k = 2. In this paper, we study divisibility properties of a q-analog of En|k. In particular, we generalize two theorems of Andrews and Gessel [3] about factors of the q-tangent numbers.
متن کاملGeneralized Bernoulli-Hurwitz Numbers and The Universal Bernoulli Numbers
The three fundamental properties of the Bernoulli numbers, namely, the theorem of von Staudt-Clausen, von Staudt’s second theorem, and Kummer’s original congruence, are generalized to new numbers that we call generalized Bernoulli-Hurwitz numbers. These are coefficients of power series expansion of a higher genus algebraic function with respect to suitable variable. Our generalization strongly ...
متن کاملArithmetic Identities Involving Bernoulli and Euler Numbers
Let p be a fixed odd prime number. Throughout this paper, Zp, Qp, and Cp will denote the ring of p-adic rational integers, the field of p-adic rational numbers, and the completion of algebraic closure of Qp, respectively. The p-adic norm is normalized so that |p|p 1/p. Let N be the set of natural numbers and Z N ∪ {0}. Let UD Zp be the space of uniformly differentiable functions on Zp. For f ∈ ...
متن کاملSome Asymptotic Properties of Generalized Fibonacci Numbers
1. INTRODUCTION Horadam [1] has generalized two theorems of Subba Rao [3] which deal with some asymptotic p r o p e r t i e s of Fibonacci numbers. Horadam defined a sequence {w (n 2) where a , a are the roots of x 2-P 21 x + P 2 2 = 0. We shall let 06 """ LX r\ r\ UO r\-| • Horadam established two theorems for {w n }: I. The number of terms of {w n } not exceeding N is asymptotic to log(Nd/(P ...
متن کاملOn some Rado numbers for generalized arithmetic progressions
The 2-color Rado number for the equation x1 + x2 − 2x3 = c, which for each constant c ∈ Z we denote by S1(c), is the least integer, if it exists, such that every 2-coloring, ∆ : [1, S1(c)]→ {0, 1}, of the natural numbers admits a monochromatic solution to x1 +x2−2x3 = c, and otherwise S1(c) = ∞. We determine the 2-color Rado number for the equation x1 + x2 − 2x3 = c, when additional inequality ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bulletin of the American Mathematical Society
سال: 1959
ISSN: 0002-9904
DOI: 10.1090/s0002-9904-1959-10278-0